# The Analog Dog

### Site Tools

parallel_rlc_circuit

# Differences

This shows you the differences between two versions of the page.

 parallel_rlc_circuit [2015/11/25 06:20]admin parallel_rlc_circuit [2015/11/25 06:20] (current)admin Both sides previous revision Previous revision 2015/11/25 06:20 admin 2015/11/25 06:20 admin 2015/11/23 06:27 admin 2015/11/23 06:27 admin 2015/11/22 20:40 admin 2015/11/22 20:36 admin 2015/11/22 20:20 admin 2015/11/22 20:11 admin 2015/11/22 20:08 admin 2015/11/22 20:05 admin 2015/11/22 20:00 admin 2015/11/22 20:00 admin 2015/11/22 19:36 admin 2015/11/22 19:34 admin 2015/11/22 19:23 admin 2015/11/22 19:20 admin 2015/11/22 18:50 admin created 2015/11/25 06:20 admin 2015/11/25 06:20 admin 2015/11/23 06:27 admin 2015/11/23 06:27 admin 2015/11/22 20:40 admin 2015/11/22 20:36 admin 2015/11/22 20:20 admin 2015/11/22 20:11 admin 2015/11/22 20:08 admin 2015/11/22 20:05 admin 2015/11/22 20:00 admin 2015/11/22 20:00 admin 2015/11/22 19:36 admin 2015/11/22 19:34 admin 2015/11/22 19:23 admin 2015/11/22 19:20 admin 2015/11/22 18:50 admin created Line 9: Line 9: $C\frac{dv_{OUT}}{dt} + \frac{v_{OUT}}{R} + \frac{1}{L}\int_{-\infty}^t{v_{OUT}dt}=0$ $C\frac{dv_{OUT}}{dt} + \frac{v_{OUT}}{R} + \frac{1}{L}\int_{-\infty}^t{v_{OUT}dt}=0$ Taking a derivative and dividing by C gives Taking a derivative and dividing by C gives - $\frac{d^2v_{OUT}}{dt^2} + \frac{1}{RC}\frac{dv_{OUT}}{dt} + \frac{1}{LC}v_out=0$ + $\frac{d^2v_{OUT}}{dt^2} + \frac{1}{RC}\frac{dv_{OUT}}{dt} + \frac{1}{LC}v_{OUT}=0$ ---- ----